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Three-dimensional numerical solutions are obtained describing convection with a 
square lattice in a layer heated from below with no-slip top and bottom boundaries. 
The limit of infinite Prandtl number and a linear dependence of the viscosity on 
temperature are assumed. The stability of the three-dimensional solutions with 
respect to disturbances fitting the square lattice is analysed. It is shown that 
convection in the form of two-dimensional rolls is stable for low variations of 
viscosity, while square-pattern convection becomes stable when the viscosity contrast 
between upper and lower parts of the fluid layer is sufficiently strong. The theoretical 
results are in qualitative agreement with experimental observations. 

1. Introduction 
Convection in fluid layers with strong variations of the viscosity has received 

considerable attention in recent years because of its importance in the thermal history 
of the terrestrial planets. The strong temperature dependence of solid-state creep is 
responsible for the large variations of the effective viscosity in the flow of the Earth’s 
mantle. As has often been emphasized (Tozer 1967), the temperature dependence of 
viscosity governs the effectiveness as a function of temperature of the convective heat 
transport and thereby the physical state of the Earth’s interior. The desire to 
understand the phenomenon of seafloor spreading and continental drift on the basis 
of models for mantle convection has led to numerous studies of convection in fluids 
with strongly temperature-dependent viscosity. 

Early theoretical work on weakly nonlinear convection (Palm 1960; &gel & Stuart 
1962 ; Busse 1962,1967) has demonstrated that the onset of convection occurs in the 
form of hexagonal cells when material properties such as viscosity vary slightly 
throughout the convection layer owing to their temperature dependence. When this 
variation is sufficiently small, hexagonal convection is replaced by convection in the 
form of rolls as soon as the Rayleigh number is increased by a small amount beyond 
its critical value. The results are in qualitative agreement with the experimental 
observations of convection patterns in fluids with temperature-dependent viscosity 
(Silverston 1958 ; Somerscales & Dougherty 1970 ; Hoard, Robertson & Acrivos 1970). 
In  particular the property that the sign of motion in the hexagonal cells depends on 
the sign of temperature dependence of viscosity was demonstrated experimentally 
(Tippelskirch 1956). Detailed quantitative measurements of the transition from 
hexagons to rolls and the transition from rolls to hexagons (which occurs at a different 
Rayleigh number because of hysteresis effects) have recently been reported by 
Walden & Ahlers (1981). 

The perturbation methods employed in the early work are no longer suitable when 



452 F.  H .  Busse and H .  Frick 

strong variations of viscosity in the fluid layer must be considered. Motivated by the 
problem of mantle convection, a considerable number of cases of convection in fluids 
with strongly temperature-dependent viscosity have been investigated numerically. 
Because of the high computational expenses, however, the numerical solutions have 
been limited to the two-dimensional case in general (Foster 1969; Torrance & 
Turcotte 1971 ; Houston & DeBremaecker 1975; DeBremaecker 1977; Kopitzke 1979; 
Schmeling & Jacoby 1981 ; Jacoby & Schmeling 1982). While the two-dimensional 
computations capture many of the characteristic features introduced by a strongly 
temperature-dependent viscosity such as the stagnant lid of highly viscous fluid near 
the top boundary and the asymmetry between up- and downgoing flow, these features 
will undoubtedly be influenced and modified by the three-dimensional structure of 
the physically realistic convection flow. The need for a better understanding of the 
three-dimensional properties of convection with strongly temperature-dependent 
viscosity has been the primary motivation for the work reported in this paper. 

Considerable progress has been made in the experimental investigation of the effects 
of strong viscosity variations on convection. Surprisingly this effect has been found 
to be much weaker than expected. Booker (1976) has shown that in the case of nearly 
exponential variation of viscosity with temperature the onset of convection and the 
heat transport follow closely the predictions for a constant-viscosity fluid if the 
Rayleigh number is based on the viscosity corresponding to the arithmetic mean of 
the temperatures a t  the two boundaries. Richter (1978) has demonstrated that the 
transition from two-dimensional to bimodal convection occurs in a fashion similar 
to that observed in the constant-viscosity experiments of Busse & Whitehead (1971). 
The secondary component of bimodal convection occurs primarily in the low- 
viscosity part of the layer, and the critical Rayleigh number for the transition is 
lowered. These results have been confirmed by the experimental observations of 
Oliver & Booker (1983) and White (1984). A new phenomenon in the form of square- 
pattern convection appears, however, when the viscosity contrast between upper and 
lower boundaries of the layer exceeds a value of order ten (Oliver & Booker 1983; 
White 1984). It is difficult to determine the points of transitions between the 
different patterns of rolls, hexagonal and square cells, and bimodal convection in the 
parameter space and it has become evident that at least the first three patterns can 
coexist in certain regions of the parameter space. In addition, the different liquids 
used by different authors complicate the comparison of the results. But the picture 
emerging from the various laboratory observations is fairly consistent in showing 
that squares replace rolls and hexagons as the predominant form of convection at  
moderate Rayleigh numbers when viscosity variations are sufficiently large. 

In  this paper square-pattern convection in the form of rolls are studied together 
with the problem of transition from one form to the other in the case when the vis- 
cosity depends linearly on temperature. This particular functional dependence is not 
very realistic as far as the experiments are concerned, and it has been chosen primarily 
for mathematical convenience ; but it permits arbitrarily high ratios r between the 
viscosities at the upper and lower boundaries. This latter parameter appears to be 
of primary importance in describing the observations, and it is expected that the 
theory is capable of describing at least qualitatively all features of physical interest. 
An infinite Prandtl number is assumed since all experiments have been carried out 
with high-Prandtl-number fluids. The numerical method is based on a Galerkin 
expansion of all dependent variables in terms of functions satisfying the boundary 
conditions. Steady solutions of the basic nonlinear equations are obtained by a 
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Newton-Raphson iteration. The computer program used for the present problem is 
an extension of the program used for the earlier analysis of bimodal convection in 
constant-viscosity fluids (Frick, Busse & Clever 1983). The main shortcoming of the 
analysis presented in this paper is the omission of solutions describing hexagonal 
convection. Because of the different structure of this form of convection, major 
changes in the computer code would have been required. In terms of computational 
efficiency it seems advisable to study hexagonal convection in connection with a more 
general approach to the problem of three-dimensional convection which is planned 
for future development. Since square-pattern convection takes over the role of 
hexagonal convection to some extent as the viscosity contrast of the layer increases, 
the competition between squares and rolls appears to be of primary theoretical 
interest. . 

The description of the analysis is divided into three major parts. In $ 2  the 
mathematical formulation of the problem is given and the method for generating 
approximate solutions is described. Results for steady two- and three-dimensional 
convection fitting the horizontal square lattice are discussed in $3. The stability of 
the steady solutions is investigated and compared with experimental observations 
in $4. The paper closes with some general remarks in 95. 

2. Mathematical description of the problem 
We consider a horizontal fluid layer of thickness d with the temperatures q and 

T, prescribed at the upper and lower boundaries respectively. Except for the 
temperature dependence of the dynamic viscosity 

P = Po[l-y(T-i(T,+T,))I,  (2.1) 

the Boussinesq approximation will be assumed in which all material properties are 
regarded as constant and the small temperature dependence of the density is taken 
into account in the gravity term only. Using d ,  d 2 / K  and (T,-T,)/R as scales for 
length, time and temperature, the dimensionless equations for the velocity vector u, 
and deviation 8 of the temperature from the static state can be written in the form 

a,w, ui + a, u,) ,UI,U~I + 8 -a, P = P Y U ,  a, ut + a, UJ, ( 2 . 2 4  

a,u, = 0, (2.2b) 

a,aje+mjU, = u,a,e+a,e, (2.2c) 

where the Rayleigh number R and the Prandtl number P are defined by 

and where K denotes the thermal diffusivity, p is the density, /3 is the coefficient of 
thermal expansion and g is the acceleration due to gravity. The unit vector A, points 
in the direction opposite to gravity and coincides with the z-axis of a Cartesian system 
of coordinates. The symbols a, denote differentiation with respect to the coordinates 
x1 = x, x2 = y, z3 = 2,  and a, indicates differentiation with respect to time. Assuming 
that the origin of the coordinate system is located on the midplane of the layer, the 
boundary conditions at  the rigid upper and lower boundaries can be written in the 

(2.4) 
form 

U , = U  1/ = u Z = 8 = O  a t z = k + .  
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In  order to obtain steady solutions of (2.2) we introduce the general representation 

uI = 6 t # + E i $  € i j ~ € k l m ~ m a j a l # + € , j k ~ k a j $  (2.5) 

for a solenoidal vector field, where Etjk is the alternator of rank three. By operating 
with 6, and E, on (2.2a),  the following two scalar equations for the fields # and $ are 
obtained : 

&t[(l +qz) ak ak 6$ # + 7 ak 6i $1 + 6 i  hi 

(1 + 7') ak a k E j E j  $ + q E j E j  ak $-&, aj {$ [aj(6i # +Ei  $) + ag(6j # + cj $)] = 0, 

(2.6b) 
I 

where the parameter 7 is defined by 

7 = Y E - m .  (2.7) 

For the presentation of the results it is convenient to express 7 in terms of the 
ratio r between the viscosity at the upper and the viscosity at the lower boundary: 

(2.8) 7 = 2 ( r -  l ) / ( r +  l ) ,  

i.e. 7 increases from the value zero for a fluid of constant viscosity to the value 2 in 
the limit of an infinite variation of the viscosity between the boundaries. Assuming 
the limit of infinite Prandtl number, we have neglected the right-hand side of ( 2 . 2 ~ ) .  
It is of interest to note that the equations (2.6a,b) for # and $ become decoupled 
when the viscosity is a function of z only. The nonlinearity introduced into the 
problem by the dependence of y on 6 is responsible for the generation of vertical 
vorticity : without this dependence the convective motion is described solely by 6, # 
in the limit of infinite Prandtl number and does not exhibit a vertical component of 
vorticity . 

Three-dimensional solutions of ( 2 . 2 ~ )  and (2.6) can be obtained by expanding #, 
$ and t9 in terms of systems of orthogonal functions: 

9 = E almn cos la,x cosnu2 y g,(z) = X aln, Glnm, 
lnm Inm 

$ = X clnm sin la, x sin nu, y f m ( z )  = E c lnm ylnm, 
Inm lnm 

(2.9a) 

(2.9b) 

6 = X blnm cosla,x cosna2 y fm(z) = Z b l n m 8 1 n m .  ( 2 . 9 c )  
lnm lnm 

The functions 

and f,(z) = sinm(z+i) 

satisfy the boundary conditions 

a 
aZ # = - # = S = $ = O  a t z = + _ +  

( 2 . 1 0 ~ )  

(2.10 b) 

(2.11) 
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for g5 and for 8 or $ respectively. The values p,, and yy are determined as the positive 
roots of 

and are given in Chandrasekhar (1961, p. 636). The summations in (2.9) run through 
0 < l , n  < co and 1 < m < CO. 

After introducing the representation (2.9) into (2.6) and (2.2c), multiplying (2.6a), 
(2.6b) and ( 2 . 2 ~ )  by @i.,k, y f j k ,  and 8 g j k  respectively, and averaging the result over 
the fluid layer, we obtain a system of algebraic equations for the unknowns alnm, clnm 
and blnm : 

Lkm(i3 j )  aijm+ B k m ( i , j )  b t jm+ Mijklnmpqralnm bpqr+q jk lnmpqr  ' lnm bpqr = '9 

Kkm( i~ j )CZjm+Hi jk lnmpqra lnm bpqr+GijklnmpqrClnm bpqr = O ,  

coth+/I-cot+p = 0, tanh%+tan% = 0, 

(2.12a) 

(2.12b) 

(2*12c) I k m ( i , j )  b t jmRJkm(i? j )  aijm + Nijklnmpqralnm bpqr+QijklnmpqrClnmbpqt = O .  
The explicit expressions for the matrix elements in these equations are lengthy and 
will not be given here. We note that considerable simplifications are obtained by 
partial integration with respect to the operations 6,, E ~ ,  a, in front of the curly brackets 
in (2.6). 

For the solution of the system (2.12) of nonlinear algebraic equations by the 
Newton-Raphson iteration method a truncation must be introduced. The computa- 
tions reported in the following sections have been done by neglecting all unknowns 
and corresponding equations with subscripts 1,  m, n satisfying 

m+2(Z+n) > N,, (2.13) 

where the integer Nt is called the truncation parameter. Other truncation schemes 
have been tried, but the truncation formula (2.13) appeared to produce the best 
approximation to the exact solution of the problem for a given number of unknowns 
when viscosity variations are substantial. Since the truncation formula (2.13) favours 
the representation of the z-dependence of the solution, i t  is well suited to approximate 
the strong vertical dependence of velocity and temperature fields introduced by the 
varying viscosity. 

Because there are no symmetry conditions that reduce the number of non-vanishing 
coefficients as they do in the constant-viscosity case investigated by Frick et al. (1983), 
the number of coefficients needed for an adequate approximation of the solution is 
fairly high even at low Rayleigh numbers. Most computations have been done with 
Nt = 7, which yields satisfactorily converged solutions at moderate Rayleigh numbers. 
The convective heat transport, for example, changes only by 1 %  typically when 
Nt = 8 is used, unless the Rayleigh number exceeds 3 times its critical value or the 
viscosity-variation parameter r becomes of order ten or larger. The total number of 
coefficients for Nt = 7 is 90; but this number can be reduced by noting that the 
coefficients a,,,, colzm, clam can be replaced by zero since they do not enter (2.12). 

3. Steady convection flow 
Before discussing the results obtained for two- and three-dimensional convection 

described by (2.12), it is of interest to inspect the predictions of the linear theory for 
the problem on hand. The linear analysis of the onset of convection in a fluid with 
temperature-dependent viscosity has been carried out by a number of authors for a 
variety of viscosity functions. We refer to the recent paper by Stengel, Oliver & 
Booker (1982) for a discussion of the different approaches. Since a linear dependence 
of the viscosity on temperature has not yet been analysed except in the limit of weak 
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FIQURE 1.  The Rayleigh number R computed from the linear equations as a function of the 
wavenumber a for selected values of the viscosity ratio r.  
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FIGURE 2. The critical Rayleigh number as a function of the viscosity ratio r .  

viscosity variation, we present the results of our computations in figures 1 and 2. A 
Runga-Kutta shooting method has been used to obtain the Rayleigh number as a 
function of the wavenumber a for different values of r .  The results are qualitatively 
similar to  those based on the viscosity function introduced by Palm (1960) and called 
Palmdensen fluid in the work of Stengel et al. This viscosity function shares with 
the relationship (2.1) the property that the viscosity a t  the median plane of the layer 
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FIGURE 3. The Nusselt number as a function of the Rayleigh number for square-cell convection (solid 
lines) and for rolls (dashed lines) at two different values of r. The wavenumber a = 3.1 has been 
assumed for all computations. The values R, = 1616 and R, = 1408 for r = 3 and 11 have been 
assumed since they correspond to the values at which the extrapolation of the numerical results 
indicate vanishing convective heat transport. These values differ slightly from the more accurately 
determined RungeKutta integration results shown in figure 2. 

is equal to the average viscosity of the static fluid layer. Thus the critical Rayleigh 
number Rc decreases with increasing r in figure 2, while Rc typically increases with 
r ,  at least initially, for a more realistic exponential dependence of the viscosity on 
temperature, in which case the average viscosity exceeds the value used in the 
definition of the Rayleigh number. At very large values of the viscosity ratio r the 
differences between Palm-Jensen fluids and exponential fluids become quite 
significant, as Stengel et al. point out. For values of r in excess of lo4 a confinement 
of the onset of convection to a boundary layer occurs in the exponential fluid, while 
convection always extends throughout the entire convection layer in the case of a 
Palm-Jensen fluid or a fluid with a linear dependence of the viscosity on temperature. 
But for values of r of order 10 which are assumed in the nonlinear computations of 
the present paper the different viscosity functions mentioned above are not expected 
to lead to qualitatively different results. 

Two- and three-dimensional solutions of (2.12) have been obtained as functions of 
the Rayleigh number for values of r between 1 and 21. Two-dimensional solutions 
were generated by dropping equations and coefficients of the system (2.12) with n > 0. 
In the computations of three-dimensional solutions the attention was focused on the 
square-cell convection case with a, = az = a. Since the critical wavenumber a does 
not change much as a function of r ,  the majority of the computations were carried 
out for a = 3.1 in the two- as well as the three-dimensional caw. 

In  figure 3 the Nusselt number is shown as a function of R for two-dimensional 
rolls and three-dimensional square cells. There is surprisingly little difference in the 
heat transport carried by the two forms of convection. The variation of the heat 
transport with the viscosity ratio r is also rather small if compared at the same value 
of R-Rc(r). The constant-viscosity case r = 1 has not been included in the figure 
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FIGURE 4. Properties of square-cell convection for R = 4 x loa, a = 3.1, r = 11. (a) and (b)  show 
lines of constant vertical vorticity and constant vertical velocity respectively in the plane z = 0. 
The contours are shown at intervals of of the maximum value; dashed lines indicate negative 
values. (c) and (d) show lines of constant temperature in the planes y = 0 and z = z/a. 

because the curve for rolls cannot be sufficiently well separated from the curve for 
r = 3. The Nusselt-numbel-Rayleigh-number dependence in the case r = 1 for both 
rolls and squares is given by Frick et al. (1983). For large values of R the heat 
transported by square-cell convection tends to exceed the heat transport by roll 
convection. But this property is not caused by the temperature dependence of 
viscosity; it has also been observed in a fluid of constant viscosity (Frick et al. 1983). 
The increase of the heat transported by square cells in comparison with that carried 
by rolls at low values of R- R, is a consequence of the temperature dependence of 
viscosity. We note that the critical Rayleigh numbers used in figure 3 have been 
obtained from the Galerkin computations by extrapolation and are thus not as 
accurate as those obtained by the Runge-Kutta method. But this discrepancy is 
unlikely to affect the shape of the curves that are plotted in figure 3 as functions of 

Some properties of the square-cell convection solution can be seen in figure 4. The 
contours of constant vertical vorticity shown in (a) are a special property of con- 
vection with temperature-dependent viscosity at infinite Prandtl number. In the 
limit r+f  the function $ and thus the vertical vorticity vanishes. The lines of 
constant vertical velocity shown in (b) indicate the asymmetry between ascending 
and descending motion which increases with increasing r .  In the limit r + l  this 
asymmetry vanishes and the contour of vanishing vertical velocity becomes the 

R-  R,. 
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diagonal of the square. The asymmetry between rising and descending flow is also 
seen in (c) and (d), which show the isotherms within the planes x = n/a and y = 0. 
These graphs clearly indicate the strong uplift of the isotherms near the centre, 
z = y = 0,  of the convection cell in comparison with the weaker downdraught in the 
corner, x = y = n/a, of the cell. 

The cellular structure itself is a result of the temperature-dependent viscosity. In 
the case r = 1 the pattern of convection is symmetric in rising and descending motions 
and cell-like boundaries do not exist. These boundaries develop only as each centre 
of rising motion become entirely surrounded by a region of descending motion. The 
resulting structure of the square-convection cells agrees in all qualitative aspects with 
the square cells seen in the experiments of Oliver & Booker (1983) and White (1984). 

4. The pressure distribution 
A function which more than any other reflects the influence of varying viscosity, 

but which is difficult to observe in the laboratory, is the dynamic pressure. The 
variable p in (2.2a) actually describes the dimensionless dynamic pressure, which is 
defined here as the deviation from the pressure distribution of the static solution of 
the problem. The role of the V p  term in the equation of motion is to balance the 
inhomogeneities in the distribution of the buoyancy force and of viscous stresses and 
thereby to ensure the continuity of the velocity. Because the stress tensor is a 
sensitive function of temperature in a fluid with strongly temperature-dependent 
viscosity, the pressure fields reflects the influence of such a viscosity more directly 
than does the streamline pattern, for example. 

To calculate p it is convenient to take the horizontal divergence of (2.2a). Since 
we are especially interested in the pressure field at the boundary, we find 

, U ~ A , P  = [ - p v 2 a , ~ , - a , ~ a a : , ~ , + a ~ , ~ a , ~ ~ + a ~ , p a , ~ , ]  at z = ki, (4.1) 

where A, = a;,+ai, denotes the horizontal Laplacian. The inspection of the repre- 
sentations (2.5), (2.9) for the velocity field indicates that the pressure at the boundary 
can be written in the form 

where the coefficients pi:) satisfy the relationships 

a a 
x (cos la, x cospa, x cos K a ,  x> cos qa, y - (cos naz y) - (cospa, y 1) 

+ cospa, x - (cos lal x) - (cos K a ,  x) (cos pa, y cos ma, y cospa, y >] 
( aY aY 

) 
a a ( ax ax 

[ 

X &( ++)m ( T 1 Ir + 

x [(sin la, x G  (cospa, x) cos K a l  x sin na, y sin qa, y- (cospa, y) 

- (sin la, x cospa, x - (cos K a l  x)) (sin ma, y (cos qa, y) cospa, y )I}. (4.3) 

X cZnm bPqr( + )r+m mm2 
lnmpqr 

) 
a 
aY 

a a 
ax Y 

>( 
a 
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FIGURE 5. The dynamic pressure field at the lower (a ,  c) and at the upper (b ,  d )  boundary. The cases 
R = 1450, r = 21 and R = 5000, r = 11 are shown in the upper and lower graphs respectively. The 
lines show levels of constant pressure corresponding to 0. lnp,,,, n = 9,8, . . . . The maximum values 
p,,, of p are 60.9, 130.4, 303, 339 in (a) ,  ( b ) ,  (c), ( d )  respectively. In (c) n has been indicated where 
the sequence of level lines reverses. 

The angular brackets indicate the average over the fluid layer, and gh stands for the 
second derivative of the function gn. Some examples of the function p are shown in 
figure 5. 

The pressure distribution at the upper boundary corresponds closely to that 
expected in a fluid of constant viscosity. Since the viscosity at  the upper surface is 
high, the variations introduced by the temperature dependence of the viscosity have 
a relatively small effect. Figures 5 (b, d) are thus nearly indistinguishable from the 
graphs for a constant-viscosity fluid except for more pronounced asymmetry be- 
tween positive and negative pressure values. Near the lower boundary, however, the 
viscosity variation plays a much more important role because of the low value of the 
viscosity a t  z = -+. In the case of a constant-viscosity fluid, 7 = 0, the relationship 
p ( ~ / a - z , n / a - y ,  -+) = p ( z , y , + )  holds, and in the limit of small amplitude of con- 
vection the relationship p ( z , y ,  -+) = - p ( z , y , $ )  is approached. Figure 5(a)  shows 
that a temperature-dependent viscosity can have a dramatic effect on the pressure 
distribution. Instead of the opposite sign for p a t  the lower boundary, we find that 
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the pressure field exhibits the same sign nearly everywhere on both boundaries as 
a function of x and y. In  contrast with the hot rising plume near x = y = 0, which 
requires little work against viscous friction, the cold descending fluid does not have 
the excess buoyancy needed to build up a high-pressure region at  the lower boundary. 
Figure 5 (a) thus exhibits a plateau of negative p and a rise of the pressure towards 
the corner x = y = 0 which balances the suction provided by the rising hot fluid. This 
latter effect is still noticeable at higher Rayleigh number and lower viscosity ratio 
r as shown in figure 5 ( c ) ,  where the pressure also rises toward x = y = 0 even though 
i t  exhibits a sign opposite to that at the upper boundary area. 

The pressure distribution at  the boundaries of the convection layer is important 
in the theory of convection in the Earth's mantle, since i t  determines the distortion 
of the boundary. For a thin solid, but flexible, plate as boundary, an expression for 
the non-dimensional deflection C can easily be derived from the continuity of the 
normal stress across the boundary. Since the velocity vector vanishes at the boundary 
the deflection is directly proportional to p : 

C = p v ~ / g d ~ .  (4.4) 

McKenzie (1977) considered the problem of two-dimensional convection with 
temperature-dependent viscosity in the case of stress-free boundaries. He also found 
a reversal of the sign of dynamic pressure a t  the boundary for strongly temperature- 
dependent viscosity . 

5. Stability analysis 
The stability of the steady solutions of the form (2.9) can be investigated by 

superimposing infinitesimal disturbances $, J ,  &with an exponential time dependence 
exp {at}. The general linear equations for the disturbances are given by 

0 = 6,[(  1 + vz) a k  6g$+ a k  6,  $1 + 6, h$g  

= [ ( l  +vz)  ak ak + ?IA, E j  E j  *-&, {$[aj(6, # + E $  $1 +a,(aj # +Ej @)I 

+ g [a,@, $ + €4 J )  + a,@, B + E, $)I}, (5.1 b )  

o = a, a, 8+ RA, 6,$ - (6, $ + E, J )  a, e - (6, # + E, @) a, 8- a8. (5.1 c) 

After expressions (2.9) for the steady solutions have been inserted, general solutions 
of (5.1) can be obtained in the form 
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FIGURE 6. Stability regions of rolls and square-cell convection aa functions of the Rayleigh number 
R and the viscosity ratio r. In the intermediate region both rolls and square cells are stable with 
respect to disturbances fitting the square lattice. The dashed line inside this region indicates the 
position where the (negative) growth rates of the strongest-growing disturbances for both forms 
of convection are equal. The dash-dotted curve indicates the critical Rayleigh number. Rolls are 
unstable below the dotted line according to (5.3). 

where the summation indices 1 and n run through negative as well as positive integers, 
in contrast with (2.9). The wavenumbers d and b are the two Floquet parameters of 
the problem. 

The general problem posed by (5.1) will not be investigated here. From the work 
of Schluter, Lortz & Busse (1965) it  is known that square cells are unstable near the 
critical value of the Rayleigh number in the case of a constant-viscosity fluid. In this 
instability one of the two rolls, that superimposed at right-angles form the 
square-pattern structure, grows while the other decays. This instability continues to 
occur when the Rayleigh number is increased, although the final state to which the 
unstable initial solution evolves is a form of bimodal convection once R exceeds a 
value of order 2 x lo4 (Frick et al. 1983). In the present analysis we restrict attention 
to this instability by assuming the special case b = d = 0 of the representation (5.2) 
and by requiring that the disturbances have the same symmetry as the steady 
solution (2.9). 

The analysis of the stability of two-dimensional convection rolls leads to a much 
simpler form of the disturbances than the representation (5.1). Only a single 
wavenumber in the third dimension has to be considered, and only a single Floquet 
parameter is required. Assuming that the roll solution depends on x, we find that the 
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most general form of disturbance is given by the representation (5.2) in which all 
coefficients with a subscript n different from unity are neglected. 

The main results of the stability analysis are shown in figure 6. The square-cell 
solution becomes stable as r increases, and the roll solution becomes unstable when 
r increases even further. Only a t  the critical Rayleigh number at about r = 2.0 do 
the two stability boundaries converge. There is thus a region in ( r ,  R)-space where 
both solutions are stable. This finding agrees well with the observed coexistence of 
rolls and square cells in the experimental realizations of the problem. The dashed line 
in figure 5 indicates the points a t  which the maximum growth rates of the 
disturbances for rolls and square cells are equal. It thus separates a region to the right 
where square cells can be regarded as the preferred solution from the region on the 
left where rolls are preferred. 

The stability analysis is incomplete mainly because disturbances leading to a 
hexagonal pattern of convection have not been considered. For small viscosity 
variations analytical expressions for the Rayleigh number below which rolls are 
unstable with respect to hexagonal disturbances have been given by Busse (1967) and 
Palm, Ellingsen & Gjevik (1967). If we identify the parameter y2 of Busse (1967) with 
-7  according to relationships (2.1), (2.7), we obtain as expression of the stability 
boundary R, below which rolls become unstable to hexagonal disturbances 

( r -  1)2 
( r +  1)2' 

Rh - R, = 660 ~ (5.3) 

But this expression is not meaningful outside the range of validity of the perturbation 
theory, I r -  1 I -4 1, and is given here only as a rough guess. 

It is worth noting that the point r x 2.0 at the critical Rayleigh number where 
the stability boundaries for square cells and rolls meet corresponds to the point where 
the convective heat transport of these two solutions becomes equal. This property 
is a consequence of the extremum principle of Busse (1967) applied to the present case 
and agrees with numerical results obtained for low values of R-R,.  

6. Concluding remarks 
The replacement by square cells of rolls as the preferred form of convection for 

increasing viscosity ratio r is in many respects similar to the replacement of rolls by 
hexagonal cells. In  a sense square cells may be regarded as ' superhexagons '. Because 
the ratio of boundary area to volume is larger for a square cell than for a hexagonal 
cell, the former configuration offers better possibilities for asymmetries. By minimizing 
the shear in the highly viscous region of descending flow and concentrating the rising 
motion in a plume of low-viscosity fluid, square-cell convection appears to be even 
more effective than hexagonal convection in decreasing viscous dissipation. In 
contrast with hexagonal motion, the asymmetric square cell cannot be formed by 
the superposition of waves with equal horizontal wave vectors of equal length. The 
configuration of the asymmetric square cell is produced in first approximation by 
the superposition of the terms proportional to cos a(z+ y ) ,  G O S ~ ( Z -  y )  onto the 
fundamental terms proportional to cosax and cos a y  in the representation (2.9). 
Nonlinear interactions of higher order than in the case of hexagonal convection are 
thus required to establish square cells as the preferred form of convection. This 
property becomes evident when the expansion of the Rayleigh number in powers of 
the amplitude E of convection is considered, R = R, + E R ~  + E ~ R ,  + . . . . In  contrast with 
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the hexagonal solution the coefficient R, always vanishes for the square-cell solution 
as it does in the case of rolls. 

Oliver (1980) has attempted a preliminary analysis of (2.2) in terms of such an 
expansion. His results indicate that the coefficient R, may become negative for an 
exponential dependence of the viscosity of temperature, which would imply subcritical 
finite-amplitude convection (Oliver, private communication). The present com- 
putations have not shown this effect at viscosity ratios r of order ten. But these 
ratios are smaller than those typically considered by Oliver, and the difference in 
the viscosity functions may be another reason for the absence of subcritical finite- 
amplitude square-cell convection. 

Experimental measurements of the Nusselt number near the critical Rayleigh 
number (Stengel et al. 1982; Richter, Nataf & Daly 1983) show that subcritical 
finite-amplitude convection is an important effect. But at low and moderate values 
of the viscosity ratio r subcritical convection occurs in the form of hexagonal cells. 
As the Rayleigh number is increased, these cells change into square cells if the 
viscosity ratio is sufficiently large. We conclude that the stability of square cells is 
not connected with the existence of subcritical finite-amplitude solutions as in the 
case of hexagonal cells. This conclusion does not preclude the existence and possible 
experimental realization of subcritical square-cell convection a t  large viscosity 
ratios r .  

The research reported in this paper has been supported by the Geophysics Section 
of the U.S. National Science Foundation. The authors are indebted to the College 
of Letters and Sciences, UCLA, for the allocation of computing resources. 

Note added in proof. We would like to use this opportunity to point out an error 
of interpretation in the paper by Frick et al. (1983). The two surfaces shown in figure 6 
of the paper actually coincide. There is thus for given values a,, a,, and R only 
one solution of the square pattern type. We are grateful to Dr J. W. Swift for bringing 
this point to our attention. We also note that a, = 410 in table 1 should be replaced 
by a, = 4.0. 
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